Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
Mathematics ; 11(1):142, 2023.
Article in English | MDPI | ID: covidwho-2166702

ABSTRACT

A mathematical model revealing the transmission mechanism of COVID-19 is produced and theoretically examined, which has helped us address the disease dynamics and treatment measures, such as vaccination for susceptible patients. The mathematical model containing the whole population was partitioned into six different compartments, represented by the SVEIQR model. Important properties of the model, such as the nonnegativity of solutions and their boundedness, are established. Furthermore, we calculated the basic reproduction number, which is an important parameter in infection models. The disease-free equilibrium solution of the model was determined to be locally and globally asymptotically stable. When the basic reproduction number R0 is less than one, the disease-free equilibrium point is locally asymptotically stable. To discover the approximative solution to the model, a general numerical approach based on the Haar collocation technique was developed. Using some real data, the sensitivity analysis of R0 was shown. We simulated the approximate results for various values of the quarantine and vaccination populations using Matlab to show the transmission dynamics of the Coronavirus-19 disease through graphs. The validation of the results by the Simulink software and numerical methods shows that our model and adopted methodology are appropriate and accurate and could be used for further predictions for COVID-19.

2.
Mathematical and Computational Applications ; 27(5):82, 2022.
Article in English | MDPI | ID: covidwho-2043855

ABSTRACT

This article develops a within-host viral kinetics model of SARS-CoV-2 under the Caputo fractional-order operator. We prove the results of the solution's existence and uniqueness by using the Banach mapping contraction principle. Using the next-generation matrix method, we obtain the basic reproduction number. We analyze the model's endemic and disease-free equilibrium points for local and global stability. Furthermore, we find approximate solutions for the non-linear fractional model using the Modified Euler Method (MEM). To support analytical findings, numerical simulations are carried out.

3.
Comput Methods Biomech Biomed Engin ; : 1-20, 2022 Aug 10.
Article in English | MEDLINE | ID: covidwho-1978120

ABSTRACT

In this paper, the mathematical modeling of the novel corona virus (COVID-19) is considered. A brief relationship between the unknown hosts and bats is described. Then the interaction among the seafood market and peoples is studied. After that, the proposed model is reduced by assuming that the seafood market has an adequate source of infection that is capable of spreading infection among the people. The reproductive number is calculated and it is proved that the proposed model is locally asymptotically stable when the reproductive number is less than unity. Then, the stability results of the endemic equilibria are also discussed. To understand the complex dynamical behavior, fractal-fractional derivative is used. Therefore, the proposed model is then converted to fractal-fractional order model in Atangana-Baleanu (AB) derivative and solved numerically by using two different techniques. For numerical simulation Adam-Bash Forth method based on piece-wise Lagrangian interpolation is used. The infection cases for Jan-21, 2020, till Jan-28, 2020 are considered. Then graphical consequences are compared with real reported data of Wuhan city to demonstrate the efficiency of the method proposed by us.

4.
Mathematical Problems in Engineering ; 2022, 2022.
Article in English | ProQuest Central | ID: covidwho-1923337

ABSTRACT

This study presents a novel numerical method to solve PDEs with the fractional Caputo operator. In this method, we apply the Newton interpolation numerical scheme in Laplace space, and then, the solution is returned to real space through the inverse Laplace transform. The Newton polynomial provides good results as compared to the Lagrangian polynomial, which is used to construct the Adams–Bashforth method. This procedure is used to solve fractional Buckmaster and diffusion equations. Finally, a few numerical simulations are presented, ensuring that this strategy is highly stable and quickly converges to an exact solution.

SELECTION OF CITATIONS
SEARCH DETAIL